An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions

 Ugo Chiacchio, ${ }^{\text {b,* }}$ Maria G. Saita, ${ }^{\text {b }}$ Daniela Iannazzo, ${ }^{\text {c }}$ Anna Piperno ${ }^{\mathrm{c}}$ and Giovanni Romeo ${ }^{\text {c,** }}$
${ }^{\text {a }}$ Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Aragon, Spain
${ }^{\mathrm{b}}$ Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania I-95125, Italy
${ }^{\text {c }}$ Dipartimento Farmaco-Chimico, Università di Messina, Viale SS. Annunziata, Messina I-98168, Italy

Received 22 September 2005; revised 26 October 2005; accepted 1 November 2005

Abstract

An efficient synthetic route to isoxazolidinyl analogues of tiazofurin has been developed. The strategy involves, as a key step, a 1,3-dipolar cycloaddition between acrylonitrile and chiral nonracemic nitrones. An opposite diastereofacial induction was observed when the chiral group was placed at either the carbon atom or the nitrogen one of the nitrone function. The 2-cyano isoxazolidines obtained were further converted into the enantiomeric target compounds by constructing the thiazole ring via condensation with l-cysteine. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Tiazofurin 1a is a thiazole-containing C-nucleoside, which has demonstrated significant activity in vitro against a number of model tumor systems. ${ }^{1}$ In the search for new antiviral and anticancer agents several modifications of nucleosides have been extensively studied. ${ }^{2}$ Among these modifications, substitution of the carbohydrate moiety with a different heterocyclic ring has emerged as an outstanding approach to new chiral candidates. ${ }^{3}$

Several structural analogues of tiazofurin have been synthesized with variations in the furanose ring, including preparation of azatiazofurin $\mathbf{1 b}^{4}$ and its thio analogue $\mathbf{2},{ }^{5}$ in which the thiazole ring was replaced by a thiophene ring. The incorporation of additional heteroatoms into the sugar framework ${ }^{6}$ has also been investigated by Chu et al. ${ }^{7}$ by preparing the dioxolanyl analogue 3. In order to study the influence of an additional nitrogen atom on the biological activity of nucleosides, we have undertaken a program of synthesis of new

[^0]isoxazolidinyl nucleosides ${ }^{8}$ including the isoxazolidinyl analogue of tiazofurin 4. ${ }^{9}$ (Chart 1).

Chart 1. Nucleoside analogues of tiazofurin.

Following this project, we planned the design and synthesis of the isoxazolidinyl analogues of tiazofurin 5 and ent-5 (regioisomers of 4), in which the relative disposition between the endocyclic oxygen atom and the thiazole ring is the same as that in tiazofurin 1a. Such a disposition was crucial for the activity as it has been demonstrated by several structural and computational studies (Chart 2). ${ }^{10}$

Herein, we wanted to report model syntheses of the enantiomeric isoxazolidinyl analogues 5 and a trans-isomer.

Chart 2. Isoxazolidinyl analogues of tiazofurin.

Our retrosynthetic analysis for the synthesis of $\mathbf{5}$ is depicted in Scheme 1.

Scheme 1. Retrosynthetic analysis of isoxazolidinyl tiazofurin 5.

Based on this analysis the thiazole ring was anticipated to be constructed through the use of classical methods ${ }^{11}$ from 5-cyanoisoxazolidine \mathbf{A}, which in turn was anticipated to be derived from the 1,3-dipolar cycloaddition reaction (1,3-DCR) between nitrone \mathbf{B} and acrylonitrile. Application of this method requires that this cycloaddition reaction proceeds in both an efficient and stereoselective manner, to afford the desired isoxazolidine \mathbf{A}. The configuration of the newly generated stereogenic centers would be determined by the nitrone. Asymmetric induction in $1,3-\mathrm{DCR}$ has been efficiently achieved by using nitrones with chiral groups at either the nitrogen atom ${ }^{12}$ or the carbon atom. ${ }^{13}$ As a representative example of the latter approach, N -benzyl-1,2-di- O -iso-propylidene-D-glyceraldehyde nitrone 6 (BIGN) is of exceptional usefulness for further conversion of the dioxolane moiety into the hydroxymethyl group. ${ }^{14}$ Alternatively, nitrone 7 also constitutes a rather convenient starting material, since all protecting groups, including the carbohydrate unit acting as a chiral auxiliary, can be removed simultaneously. ${ }^{15}$ The use of a related N-ribosyl nitrone has been described by Vasella in similar cycloaddition reactions. ${ }^{16}$ Herein, we report two complementary approaches to tiazofurin analogues

5 and ent-5 using both 6 and 7 as starting materials, respectively.

2. Results and discussion

2.1. Synthesis from N-benzyl-1,2-di- O-isopropylidene-dglyceraldehyde nitrone 6

The 1,3-dipolar cycloaddition between 6 and acrylonitrile afforded four isomeric isoxazolidines in a 35:50:10:5 ratio and quantitative yield (Scheme 2). The reaction was carried out without solvent and at reflux. No significant changes in the stereoselectivity were observed by decreasing the reaction temperature to $0^{\circ} \mathrm{C}$ although the reaction time did increase considerably. In fact, the reaction did not go on completion at ambient temperature after 7 days. The addition of a solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}\right.$, or toluene) also increased the reaction time.

Scheme 2. 1,3-Dipolar cycloaddition between 6 and acrylonitrile.
The relative cis/trans-configuration of the isoxazolidine ring substituents was assigned on the basis of NOE experiments (Fig. 1). For trans-compounds 8a and 8c, irradiation of $\mathrm{H}-3$ produced a strong enhancement of only $\mathrm{H}-4 \mathrm{a}(18-20 \%$) while irradiation of $\mathrm{H}-5$ produced enhancement of only H-4b (13-16\%). Furthermore, irradiation of $\mathrm{H}-4 \mathrm{a}$ and $\mathrm{H}-4 \mathrm{~b}$ in the same experiment produced enhancements of H-3 (12-13\%) and H-5 ($10-12 \%$), respectively. For cis-compounds $\mathbf{8 b}$ and 8d, irradiation of $\mathrm{H}-4 \mathrm{a}$ produced strong enhancements of both H-3 ($12-15 \%$) and H-5 ($9-11 \%$). Irradiation of H-5 produced enhancement of H-4a ($12-14 \%$) and a much smaller enhancement of $\mathrm{H}-4 \mathrm{~b}(2 \%$, not indicated in Fig. 1). Irradiation of H-3 only produced enhancement of $\mathrm{H}-4 \mathrm{a}(11-13 \%)$.

The absolute configuration was assigned by determining the relative configuration between isoxazolidine and the

8a

8c

8d

Figure 1. Selected NOE observed for 7 ($\eta_{\text {obs }}$ given as percent of $\eta_{\max }$).

1,3-dioxolane ring. The assigned configurations were deduced from 2D COSY, NOESY, and HMQC experimental data. In the case of $(3 R, 5 S)$-8d a single X-ray crystallographic analysis ${ }^{17}$ served to confirm its configuration (Fig. 2). This assignment also served to confirm the absolute configuration of the other cis adduct, $\mathbf{8 b}$ (the major one obtained in the reaction).

Figure 2. Perspective view (ORTEP) of 8d. Non-hydrogen atoms are drawn as 50% thermal ellipsoids while hydrogens are drawn at an arbitrary size. Only the atoms refined with anisotropic thermal parameters are drawn with the principal axes indicated; the isotropic atoms are represented as simple circles.

The reaction showed a good diastereofacial selectivity (anti/syn, 85:15) but a poor endo/exo selectivity (trans/ cis, 45:55). ${ }^{18}$ The former was in agreement with previous 1,3-dipolar cycloaddition reactions carried out with α alkoxy nitrones derived from D-glyceraldehyde, in which the anti adducts (with respect to the dioxolane ring) were, in all cases, obtained preferentially. ${ }^{19}$ The lack of endo/exo selectivity was also in accordance with previous experimental and theoretical studies carried out by

Rastelli et al. ${ }^{20}$ Indeed, we have carried out theoretical studies for the particular cycloaddition of $\mathbf{6}$ and acrylonitrile at B3LYP/6-31G(d) and MP2/6-31+G(d)// B3LYP/6-31G(d) levels ${ }^{21}$ and no determinant data could be obtained. The energy values obtained for the transition structures leading to the adducts 8a-d are given in Table 1, while the optimized geometries [B3LYP/6-31G(d)] are illustrated in Figure 3.

Table 1. Total (hartrees) and relative ($\mathrm{kcal} / \mathrm{mol}$) electronic energy values for transition structures TS1-TS4

	Total energy (hartrees)			Relative energy (kcal) $^{$$}$		$E(\mathrm{~B} 3 \mathrm{LYP})^{\mathrm{a}}$
	$E(\mathrm{MP} 2)^{\mathrm{b}}$		$E(\mathrm{~B} 3 \mathrm{LYP})^{\mathrm{a}}$	$E(\mathrm{MP} 2)^{\mathrm{b}}$		
$\mathbf{T S 1}^{\mathrm{c}}$	-725.452149	-723.494779		0.000	0.000	
TS2 $^{\mathrm{d}}$	-725.451839	-723.494564		0.195	0.129	
TS3 $^{\mathrm{e}}$	-725.449344	-723.491413		1.760	2.107	
TS4 $^{\mathrm{f}}$	-725.449192	-723.491186		1.856	2.249	

${ }^{\text {a }}$ Optimized structures at B3LYP/6-31G(d) level.
${ }^{\mathrm{b}}$ Single point calculations at MP2/6-31G(d)//B3LYP/6-31G(d) level.
${ }^{\mathrm{c}}$ Si endo leading to anti trans $\mathbf{8 a}$.
${ }^{\mathrm{d}}$ Si exo leading to anti cis $\mathbf{8 b}$.
${ }^{\mathrm{e}}$ Re endo leading to syn trans $\mathbf{8 c}$.
${ }^{\mathrm{f}}$ Re exo leading to syn cis $\mathbf{8 d}$.

Although the calculations correctly predicted the diastereofacial $S i$ face preference for the reaction, differences of less than $0.2 \mathrm{kcal} / \mathrm{mol}$ were obtained between the corresponding endo (TS1) and exo (TS2) transition states. Clearly, these differences are only indicative that mixtures of compounds will be obtained. The values shown in Table 1 cannot be used as predictive values since they are within experimental error.

The formation of the thiazole ring was accomplished by condensation of $\mathbf{8 b}$ with L-cysteine to form the precursor 2-thiazoline following the procedure described by Ramasamy et al. ${ }^{22}$ After purification of the reaction mixture we observed epimerization of the stereogenic center at the thiazolidine ring, the two diastereomers of compound 9a being inseparable. We also obtained methyl ester 9b in 6% yield due to transesterification with the solvent of the reaction (MeOH). In this case, only one isomer was observed. For synthetic purposes neither the epimerization of 9 a nor transesterification to $\mathbf{9 b}$ are relevant. Oxidation of epimeric $9 \mathbf{a}$ with manganese dioxide yielded the thiazole-containing derivative 10a (Scheme 3). Transformation of the dioxolane ring into a hydroxymethyl group following our previously reported procedure ${ }^{23}$ afforded compound 11a in 74% overall yield (three steps). During this procedure, we changed to EtOH as the solvent in the deacetalyzation step, in order to avoid further transesterification reaction. Treatment of 11a with methanolic ammonia quantitatively afforded isoxazolidinyl tiazofurin 5 (47\% overall yield; seven steps from nitrone 6). As stated above, the obtention of a transesterified compound $\mathbf{9 b}$ was not relevant from a synthetic point of view, since that compound was also transformed into 5 following the same sequence of reactions indicated in Scheme 3.

In a similar fashion, the epimeric trans adduct $\mathbf{8 a}$ was converted to the trans-isomer of isoxazolidinyl analogue

Figure 3. Optimized structures $[B 3 L Y P / 6-31 G(d)]$ for transition structures leading to adducts $\mathbf{8 a - d}$.

Scheme 3. Synthesis of isoxazolidinyl analogue of tiazofurin 5 .
of tiazofurin 15 (Scheme 4). The reaction of $\mathbf{8 a}$ with L-cysteine afforded a ca. 10:1 mixture of thiazolines 12a and 12b, from which the major compound 12a was separated as a mixture of epimers. Oxidation of pure 12a gave rise to thiazole 13 in 90% yield. Acidic hydrolysis of $\mathbf{1 3}$, followed by oxidation with the heterogeneous system ${ }^{24} \mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ and further reduction of the emerging aldehyde with NaBH_{4} provided 14, the ammonolysis of which furnished trans-isoxazolidinyl tiazofurin 15; overall yield based on 6: 39% (seven steps).

2.2. Synthesis from N-(D-ribosyl)- C-(tert-butyldiphenylsiloxymethyl) nitrone 7

Our second approach to isoxazolidinyl tiazofurin consisted of using the N-ribosyl nitrone 7 as starting material in which the carbohydrate unit acted both as a chiral auxiliary and as a protecting group. (Scheme 1). Nitrone 7 was prepared in situ from the condensation of aldehyde 16, obtained from (\pm)-solketal, ${ }^{25}$ with an equimolar amount of hydroxylamine $\mathbf{1 7}$ obtained from D-ribose. ${ }^{26}$

Scheme 4. Synthesis of the trans-isoxazolidinyl analogue of tiazofurin 15.

Scheme 5. Cycloaddition between 7 and acrylonitrile.

Thus, the cycloaddition reaction was carried out by heating at $70^{\circ} \mathrm{C}$ for 12 h in a sealed tube solution of $\mathbf{1 6}$ and $\mathbf{1 7}$ in acrylonitrile and in the absence of a solvent (Scheme 5). NMR analysis of the crude mixture showed the presence of four adducts in a isomeric ratio of ca. 60:30:7:3, which were obtained in a combined yield of 86%. The crude mixture was purified by MPLC (hexane/diethyl ether, 3:2 as eluant) and the major adduct 18d obtained in pure form (we were unable to separate completely minor isomers by MPLC or HPLC and only enriched compounds were isolated: see Section 4).

The stereochemical assignment of the major adduct 18d was made by chemical correlation by comparison of a further derivative with the same compound obtained from the above described 8d (Scheme 6).

Scheme 6. Determination of the configuration of 18d.

Compound 18d was converted into 21 by acidic treatment (p-toluenesulfonic acid in methanol), which was subsequently N -benzylated to give isoxazolidine $\mathbf{2 0}$. This compound was also obtained from 8d through the transformation of the dioxolane ring into a hydroxymethyl group and silylated under usual conditions. ${ }^{23}$ Both
products showed identical physical and spectroscopic properties including the sign of specific rotation, demonstrating unambiguously the $(3 R, 5 S)$-configuration of compound 18d. ${ }^{27}$

Analogous to the results described above, condensation of adduct 18 d with L-cysteine in dry methanol ${ }^{22}$ provided thiazoline 22 in good yield as a mixture of epimers (less than 3% of transesterification was observed). The thiazoline ring was oxidized $\left(\mathrm{MnO}_{2}\right)$ and the resulting isoxazolidinyl thiazole 23 treated with ammonia in methanol to afford 24, which was in situ transformed by acidic treatment $(1.5 \% \mathrm{HCl}$ in EtOH$)$ into isoxazolidinyl tiazofurin ent-5 (60% overall yield; four steps) (Scheme 7).

3. Conclusions

In conclusion, the approach described herein for the preparation of new nucleoside analogues of tiazofurin combines the stereochemical preference of the cycloaddition reaction between nitrones 6 and 7, and acrylonitrile and efficiency in constructing the thiazole ring. Remarkably, a complementary selectivity between nitrones 6 and 7 has been observed, leading to the preparation of enantiomeric analogues 5 and ent-5 other key steps are the transformation of the dioxolane ring into the hydroxymethyl group and the use of a chiral auxiliary that can be easily removed to afford isoxazolidinyl analogue ent-5, unsubstituted on the nitrogen atom. In the case of analogue 5 , the N-benzyl group proved to be difficult to eliminate due to the incompatibility of reductive methods with both the $\mathrm{N}-\mathrm{O}$ bond and the thiazole moiety. ${ }^{28}$ In this respect, the methodology based on N-glycosyl nitrone 7 is more advantageous, since allows preparation of unprotected analogues. ${ }^{29}$

Since the cyano group is the starting point for the construction of a variety of heterocyclic systems, our approach can also be used for incorporating other heterocyclic bases with a cis-configuration with respect

Scheme 7. Synthesis of isoxazolidinyl tiazofurin ent-5.
to the hydroxymethyl group as preferred in nucleoside analogues. The extension of the methodology towards the preparation of other optically active isoxazolidinyl-C-nucleosides is currently underway.

4. Experimental

The reaction flasks and other glass equipment were heated in an oven at $130^{\circ} \mathrm{C}$ overnight and assembled in a stream of Ar. All reactions were monitored by TLC on silica gel 60 F254; the position of the spots were detected with 254 nm UV light or by spraying with one of the following staining systems: 50% methanolic sulfuric acid, 5% ethanolic phosphomolybdic acid and iodine. Preparative centrifugally accelerated radial thin-layer chromatography (radial chromatography) was performed with a Chromatotron ${ }^{\circledR}$ Model 7924 T (Harrison Research, Palo Alto, CA, USA) and with solvents that were distilled prior to use; the rotors (1 or 2 mm layer thickness) were coated with silica gel Merck grade type 7749, TLC grade, with binder and fluorescence indicator (Aldrich 34,644-6) and the eluting solvents were delivered by the pump at a flow-rate of $0.5-1.5 \mathrm{~mL} / \mathrm{min}$. Column chromatography was carried out in a Buchi 800 MPLC system using silica gel SDS 5-60 $\mu \mathrm{m}$. Analytical HPLC was carried out in a Waters Alliance system with RI and PDA detection. Semi-preparative HPLC was performed using C18 reverse phase columns at a maximum flow of $25 \mathrm{~mL} / \mathrm{min}$ with a Waters isocratic pump. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 400 or Varian 500 instruments in CDCl_{3} unless otherwise indicated. Chemical shifts are reported in ppm (δ) relative to CHCl_{3} ($\delta=7.26$) in CDCl_{3}. Optical rotations were taken at $25^{\circ} \mathrm{C}$ on a Perkin-Elmer 241 polarimeter. Elemental analyses were performed on a Perkin-Elmer 240B microanalyzer. Nitrone $\mathbf{6}$ was prepared from D-glyceraldehyde as described. ${ }^{30}$

4.1. 1,3-Dipolar cycloaddition of nitrone 6 with acrylonitrile

Nitrone 6 ($1.88 \mathrm{~g}, 8 \mathrm{mmol}$) was dissolved in acrylonitrile ($17 \mathrm{~g}, 0.32 \mathrm{~mol}$) and the resulting solution stirred at reflux until no more nitrone was observed (TLC, ca. 4 h). The reaction mixture was evaporated to dryness and the residue was analyzed by NMR to determine the diastereomeric ratio. Purification by radial chromatography (hexane/EtOAc, 80:20) and semipreparative HPLC (hexane $/{ }^{i} \mathrm{PrOH}, 98: 2$) gave the pure adducts.
4.1.1. (3S,5S)-2-Benzyl-3-(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yll-5-cyanoisoxazolidine 8a. Eluted first (0.807 g , $35 \%)$, oil; $[\alpha]_{\mathrm{D}}=+43\left(c 0.22, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}): $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{dd}, 1 \mathrm{H}$, $J=5.2,7.3 \mathrm{~Hz}), 3.39(\mathrm{dt}, 1 \mathrm{H}, J=4.4,8.8 \mathrm{~Hz}), 3.48$ (dd, $1 \mathrm{H}, \quad J=5.2, \quad 8.8 \mathrm{~Hz}), \quad 3.85(\mathrm{dt}, \quad 1 \mathrm{H}, \quad J=5.1$, $8.1 \mathrm{~Hz}), 3.91(\mathrm{~d}, 1 \mathrm{H}, \quad J=13.2 \mathrm{~Hz}$), 3.99 (dd, 1 H , $J=5.9,8.8 \mathrm{~Hz}$), 4.10 (pseudo q, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 4.30 (d, $1 \mathrm{H}, J=13.2 \mathrm{~Hz}$), 4.75 (dd, $1 \mathrm{H}, J=7.3,8.1 \mathrm{~Hz}$), $7.33(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.0,26.8,36.1$, $62.0,64.8,67.5,67.9,75.8,109.6,119.8,128.0,128.6$ (2C), 129.3 (2C), 135.9. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (288.34): C, 66.65; H, 6.99; N, 9.72. Found: C, 66.80; H, 7.11; N, 9.64.
4.1.2. (3S,5R)-2-Benzyl-3-(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl|-5-cyanoisoxazolidine 8b. Eluted second (1.15 $\mathrm{g}, 50 \%)$, white solid; $\mathrm{mp} 71-73^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-50(c$ $\left.0.27, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{dd}, 1 \mathrm{H}, J=4.1,13.2 \mathrm{~Hz}), 2.78(\mathrm{dt}$, $1 \mathrm{H}, J=8.8,13.2 \mathrm{~Hz}$, 3.22 (dt, $1 \mathrm{H}, J=4.1,8.0 \mathrm{~Hz}$), 3.65 (dd, $1 \mathrm{H}, J=5.5,8.5 \mathrm{~Hz}$), 3.95 (s, 2H), 4.05 (dd, $1 \mathrm{H}, J=6.3,8.5 \mathrm{~Hz}), 4.17(\mathrm{dt}, 1 \mathrm{H}, J=5.9,7.7 \mathrm{~Hz})$, $4.84(\mathrm{dd}, 1 \mathrm{H}, J=4.4,9.0 \mathrm{~Hz}), 7.32(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $25.1,26.7,36.4,61.3,64.2,66.3$, $67.4,75.5,109.7,118.0,128.0,128.6$ (2C), 128.9 (2C),
135.7. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (288.34): C, 66.65 ; H, 6.99; N, 9.72. Found: C, 66.73, H, 6.80, N, 9.91.
4.1.3. (3R,5R)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl|-5-cyanoisoxazolidine 8c. Eluted third (0.231 $\mathrm{g}, 10 \%)$, sticky foam; $[\alpha]_{\mathrm{D}}=+11\left(c \quad 0.37, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 2.52$ (ddd, $1 \mathrm{H}, \quad J=5.9,8.8,13.2 \mathrm{~Hz}$), 2.75 (ddd, 1 H , $J=4.4,8.1,13.2 \mathrm{~Hz}$), 3.50 (pseudo q, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}$), $3.69(\mathrm{dd}, 1 \mathrm{H}, J=5.9,8.8 \mathrm{~Hz}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=6.6$, 8.1 Hz), 4.07 (pseudo q, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}$), $4.19(\mathrm{~d}, 1 \mathrm{H}$, $J=13.2 \mathrm{~Hz}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.70(\mathrm{dd}, 1 \mathrm{H}$, $J=4.4,8.8 \mathrm{~Hz}), 7.32(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $25.5,26.5,36.9,61.5,64.6,66.9,67.3,76.1,110.3$, 118.9, 127.9, 128.7 (2C), 129.0 (2C), 136.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (288.34): C, 66.65; H, 6.99; $\mathrm{N}, 9.72$. Found: C, 66.41; H, 6.84; N, 9.83.

4.1.4. (3R,5S)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl|-5-cyanoisoxazolidine 8d. Eluted fourth

 $(0.115 \mathrm{~g}, 5 \%)$, white solid; $\mathrm{mp} 115-117^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-32$ (c $\left.0.25, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (ddd, $1 \mathrm{H}, J=3.5,7.0,13.1 \mathrm{~Hz}$), $2.70(\mathrm{dt}, \quad 1 \mathrm{H}, \quad J=9.2, \quad 13.1 \mathrm{~Hz}), 3.05$ (pseudo q, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=7.4,9.3 \mathrm{~Hz}), 3.95$ $(\mathrm{d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=7.6,9.4 \mathrm{~Hz})$, 4.26 (pseudo q, $1 \mathrm{H}, \quad J=6.7 \mathrm{~Hz}), \quad 4.50(\mathrm{~d}, \quad 1 \mathrm{H}$, $J=15.0 \mathrm{~Hz}), 4.73(\mathrm{dd}, 1 \mathrm{H}, J=3.5,9.0 \mathrm{~Hz}), 7.38(\mathrm{~m}$, $5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.4,26.9,37.7,60.9,63.9$, $66.5,66.9,76.6,110.5,119.0,127.7,128.6$ (2C), 128.8 (2C), 136.7. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (288.34): C, 66.65; H, 6.99; N, 9.72. Found: C, 66.80, H, 6.73, N, 9.59.
4.2. Condensation between 8 b and L -cysteine

To a well-stirred solution of $\mathbf{8 b}(0.865 \mathrm{~g}, 3 \mathrm{mmol})$ in dry methanol (50 mL) at room temperature under an argon atmosphere was added (S)-cysteine ethyl ester hydrochloride $(0.835 \mathrm{~g}, \quad 4.5 \mathrm{mmol})$ and triethylamine $(0.455 \mathrm{~g}, 4.5 \mathrm{mmol})$. The resulting mixture was stirred for 3 h and evaporated to dryness. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, $5 \% \mathrm{NaHCO}_{3}$ solution and brine. The organic extract was dried over MgSO_{4}, filtered, and evaporated to dryness. The crude product, containing 6% of the corresponding methyl ester, can be used as such for the next reaction. It can also be purified by radial chromatography (hexane/ $\mathrm{EtOAc}, 90: 10)$ to give pure products.
4.2.1. (3S,5R)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl]-5-[(4RS)-4-(ethoxycarbonyl)-2-thiazolin-2-yl]isoxazolidine 9a (mixture of epimers). $0.883 \mathrm{~g}(70 \%)$, oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{ddt}, 1 \mathrm{H}, J=3.3,6.3$, $13.2 \mathrm{~Hz}), 2.86(\mathrm{ddt}, 1 \mathrm{H}, J=5.3,8.8,13.2 \mathrm{~Hz}), 3.19$ (ddt, $1 \mathrm{H}, J=3.3,7.0,8.1 \mathrm{~Hz}), 3.40-3.50(\mathrm{~m}, 3 \mathrm{H})$, $3.82(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=12.9 \mathrm{~Hz}), 3.95(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=5.9$, $9.1 \mathrm{~Hz}), 4.02(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=12.9 \mathrm{~Hz}), 4.11(\mathrm{dt}, 1 \mathrm{H}$, $J=5.9,9.1 \mathrm{~Hz}), 4.22(\mathrm{dq}, 2 \mathrm{H}, J=1.8,7.0 \mathrm{~Hz}), 5.06$ (dt, $1 \mathrm{H}, J=7.0,9.1 \mathrm{~Hz}), 5.18(\mathrm{ddt}, 1 \mathrm{H}, J=3.5,6.3$, $8.8 \mathrm{~Hz}), 7.26-7.32(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $14.2,25.3,26.9,34.2,34.5,37.2,61.5,61.8,66.5$,
$66.8,67.8,77.9,109.2,127.8,128.5$ (2C), 129.3 (2C), $136.2,170.5,176.4$.
4.2.2. (3S,5R)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl]-5-[(4S)-4-(methoxycarbonyl)-2-thiazolin-2-yl]isoxazolidine 9b. $76 \mathrm{mg}(6 \%)$, oil; $[\alpha]_{\mathrm{D}}=-4$ (c 0.10, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, $3 \mathrm{H}), 2.50$ (dddd, $1 \mathrm{H}, J=4.1,6.5,7.6,13.0 \mathrm{~Hz}$), 2.88 (ddt, $1 \mathrm{H}, J=3.5,8.8,13.0 \mathrm{~Hz}$), $3.20(\mathrm{ddt}, 1 \mathrm{H}, J=3.5$, $7.0,8.2 \mathrm{~Hz}), 3.40-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}$, $1 \mathrm{H}, J=12.9 \mathrm{~Hz}$), 3.90 (ddd, $1 \mathrm{H}, J=3.5,6.5,9.4 \mathrm{~Hz}$), $4.10(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=12.9 \mathrm{~Hz}), 4.16(\mathrm{dt}, \quad 1 \mathrm{H}, \quad J=5.9$, $8.2 \mathrm{~Hz}), 5.08(\mathrm{dt}, 1 \mathrm{H}, J=4.7,9.4 \mathrm{~Hz}), 5.17(\mathrm{ddd}, 1 \mathrm{H}$, $J=3.5,5.8,9.4 \mathrm{~Hz}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}): 25.2, 26.8, 34.1, 34.4, 37.2, 52.8, 61.5, 66.6, $66.8,67.8,77.9,109.2,127.8,128.5$ (2C), 129.3 (2C), 136.2, 171.0, 176.5. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (406.50): C, 59.09 ; H, 6.45; N, 6.89. Found: C, 59.25; H, 6.27; N, 7.02.

4.3. (3S,5R)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-[4-(ethoxycarbonyl)-2-thiazolyl]isoxazolidine 10a

To a well-stirred solution of $9 \mathbf{a}(0.841 \mathrm{~g}, 2 \mathrm{mmol})$ in benzene (40 mL) at room temperature was added activated $\mathrm{MnO}_{2}(2.0 \mathrm{~g})$. The resulting suspension was refluxed for 12 h and then filtered. The solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate evaporated to dryness. The crude product was purified by radial chromatography (hexane/EtOAc, 85:15) to afford $0.753 \mathrm{~g}(90 \%)$ of pure $10 a$ as an oil. $[\alpha]_{\mathrm{D}}=-16\left(c \quad 0.39, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.20(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}$, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 2.48 (ddd, $1 \mathrm{H}, J=4.0,5.8,13.4 \mathrm{~Hz}$), $3.00(\mathrm{dt}, 1 \mathrm{H}, J=8.8,13.4 \mathrm{~Hz}), 3.24(\mathrm{ddd}, 1 \mathrm{H}, J=4.0$, $7.6,8.8 \mathrm{~Hz}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=5.8,8.3 \mathrm{~Hz}), 3.93$ (dd, $1 \mathrm{H}, J=6.3,8.3 \mathrm{~Hz}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.04$ $(\mathrm{q}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.35(\mathrm{q}$, $2 \mathrm{H}, ~ J=7.0 \mathrm{~Hz}$), $5.56(\mathrm{dd}, 1 \mathrm{H}, J=5.8,9.1 \mathrm{~Hz}), 7.22-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $14.3,25.1,26.6,38.7,61.4,61.7,67.1,67.5,76.8,78.0$, $109.3,127.8,127.9,128.5$ (2C), 129.3 (2C), 136.2, 146.9, 161.3, 172.6. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (418.51): C, 60.27 ; H, 6.26; N, 6.69. Found: C, 60.09 ; H, 6.17; N, 6.81.

4.4. (3S,5R)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl|-5-[4-(methoxycarbonyl)-2-thiazolyl]isoxazolidine 10b

Treatment of $9 \mathbf{~ b}$ ($80 \mathrm{mg}, 0.2 \mathrm{mmol}$) under the same conditions described above for the preparation of 10a provided after radial chromatography (hexane/EtOAc, $85: 15) 71 \mathrm{mg}(88 \%)$ of pure $\mathbf{1 0 b}$ as an oil $[\alpha]_{\mathrm{D}}=-23$ (c $\left.0.12, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.20(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 2.48$ (ddd, $1 \mathrm{H}, J=4.0,5.6,13.2 \mathrm{~Hz}$), $3.02(\mathrm{dt}, \quad 1 \mathrm{H}, \quad J=8.8, \quad 13.2 \mathrm{~Hz}), 3.24(\mathrm{ddd}, \quad 1 \mathrm{H}$, $J=4.0,7.6,8.8 \mathrm{~Hz}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=5.6,8.3 \mathrm{~Hz})$, 3.90 (dd, $1 \mathrm{H}, \quad J=6.3,8.3 \mathrm{~Hz}), 3.94(\mathrm{~d}, 1 \mathrm{H}, \quad J=$ $13.2 \mathrm{~Hz}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, 1 \mathrm{H}$, $J=13.2 \mathrm{~Hz}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=5.8,9.1 \mathrm{~Hz}), 7.22-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.1$, 26.6, 38.8, 61.3, 61.7, 67.4 (2C), 76.6, 77.6, 109.3, 127.8, 127.9, 128.5 (2C), 129.3 (2C), 136.2, 146.9,
161.4, 173.0. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (404.48): C, 59.39; H, 5.98; N, 6.93. Found: C, 59.48; H, 5.80; N, 7.02.

4.5. (3S,5R)-2-Benzyl-3-(hydroxymethyl)-5-[4-(ethoxy-carbonyl)-2-thiazolyl isoxazolidine 11a

To a solution of $\mathbf{1 0 a}(0.7 \mathrm{~g}, 1.67 \mathrm{mmol})$ in EtOH $(50 \mathrm{~mL})$ was added p-toluenesulfonic acid $(86 \mathrm{mg}$, 0.5 mmol) and the resulting mixture heated at $60^{\circ} \mathrm{C}$ for 4 h , at which time the reaction mixture was treated with saturated aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and partially evaporated under reduced pressure. The residue was taken up in EtOAc (50 mL) and washed with brine. The organic extract was dried over MgSO_{4}, filtered, and evaporated to dryness. The crude diol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to a vigorously stirred suspension previously formed with chromatographic grade silica gel (3.3 g), 0.65 M aq solution of $\mathrm{NaIO}_{4}(3.3 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The reaction mixture was stirred for 15 min and filtered. The silica gel was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$ and the filtrate evaporated under reduced pressure to dryness. The crude aldehyde was then dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{NaBH}_{4}(113 \mathrm{mg}, 3 \mathrm{mmol})$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h the reaction mixture is treated with saturated aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and partially evaporated under reduced pressure. The residue was taken up in EtOAc (40 mL) and washed with brine. The organic extract was dried over MgSO_{4}, filtered, and evaporated to dryness. The crude product was purified by radial chromatography (hexane/EtOAc, $75: 25$) to afford 0.431 g (74%) of pure 11a as an oil; $[\alpha]_{\mathrm{D}}=-2\left(c 0.55, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.08$ (dd, $1 \mathrm{H}, \quad J=5.6,6.6 \mathrm{~Hz}$, ex. $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.26(\mathrm{dt}, 1 \mathrm{H}$, $J=5.1,13.2 \mathrm{~Hz}), 2.95(\mathrm{dt}, 1 \mathrm{H}, J=8.8,13.2 \mathrm{~Hz}), 3.31$ (ddt, $1 \mathrm{H}, J=4.5,7.3,8.8 \mathrm{~Hz}$), 3.42 (ddd, $1 \mathrm{H}, J=4.3$, $6.6,11.4 \mathrm{~Hz}$), 3.46 (ddd, $1 \mathrm{H}, J=5.6,7.3,11.4 \mathrm{~Hz}$), $3.96(\mathrm{~d}, 1 \mathrm{H}, ~ J=13.2 \mathrm{~Hz}), 4.07(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz})$, $4.35(\mathrm{q}, \quad 2 \mathrm{H}, \quad J=7.0 \mathrm{~Hz}), \quad 5.50(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=5.6$, $9.1 \mathrm{~Hz}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 14.4,38.4,61.4,61.5,62.9,66.8,76.4,127.8$, $127.9,128.6$ (2C), 129.2 (2C), 136.3, 146.9, 161.3, 172.9. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (348.42): C, 58.60; H, 5.79; N, 8.04. Found: C, 58.86; H, 5.61; N, 8.29.

4.6. (3S,5R)-2-Benzyl-3-(hydroxymethyl)-5-[4-(methoxy-carbonyl)-2-thiazolyl|isoxazolidine 11b

Treatment of $\mathbf{1 0 b}(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ under the same conditions described above for the preparation of 11a provided after radial chromatography (hexane/EtOAc, $75: 25) 40 \mathrm{mg}(80 \%)$ of pure 11b as an oil. $[\alpha]_{\mathrm{D}}=-11$ (c $0.21, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.10$ (br s, $1 \mathrm{H}), 2.25(\mathrm{dt}, 1 \mathrm{H}, J=5.1,13.2 \mathrm{~Hz}), 2.95(\mathrm{dt}, 1 \mathrm{H}$, $J=8.7,13.2 \mathrm{~Hz}), 3.31(\mathrm{ddt}, 1 \mathrm{H}, J=4.4,7.3,8.7 \mathrm{~Hz})$, 3.42-3.48 (m, 2H), $3.86(\mathrm{~s}, ~ 3 \mathrm{H}), 3.98(\mathrm{~d}, 1 \mathrm{H}$, $J=13.0 \mathrm{~Hz}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}), 5.50(\mathrm{dd}, 1 \mathrm{H}$, $J=5.6,9.0 \mathrm{~Hz}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 38.4,61.5,61.5,62.9,66.9,76.3$, $127.8,127.9,128.6$ (2C), 129.2 (2C), 136.3, 146.8, 161.7, 172.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (334.39):

C, 57.47 ; H, 5.43; N, 8.38. Found: C, 57.44; H, 5.32; N, 8.57.

4.7. (3S,5R)-2-Benzyl-3-(hydroxymethyl)-5-[4-(amino-carbonyl)-2-thiazolyl]isoxazolidine 5

Ammonia gas was bubbled through a well stirred solution of $\mathbf{1 0}(0.4 \mathrm{~g}, 1.15 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ at room temperature. After 1 h , the reaction mixture was evaporated under reduced pressure to dryness. The residue was purified by radial chromatography (hexane/EtOAc, $65: 35)$ to give $0.367 \mathrm{~g}(100 \%)$ of pure 5 as an oil. $[\alpha]_{\mathrm{D}}=-28\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 2.35 (br t, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}$, ex. $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.42(\mathrm{dt}, 1 \mathrm{H}$, $J=5.1,12.9 \mathrm{~Hz}), 3.00(\mathrm{dt}, 1 \mathrm{H}, J=8.8,12.9 \mathrm{~Hz}), 3.40$ (ddd, $1 \mathrm{H}, J=4.3,8.8,12.4 \mathrm{~Hz}), 3.50-3.61(\mathrm{~m}, 2 \mathrm{H})$, $4.11(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz})$, $5.49(\mathrm{dd}, 1 \mathrm{H}, J=5.6,8.8 \mathrm{~Hz}), 5.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ex} . \mathrm{D}_{2} \mathrm{O}\right)$, 7.10 (br s, 1 H , ex. $\mathrm{D}_{2} \mathrm{O}$), $7.32-7.41(\mathrm{~m}, 5 \mathrm{H}), 8.10$ (s, $1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 38.0,61.3,62.8,66.8,76.0$, 124.9, 127.8, 128.6 (2C), 129.1 (2C), 136.3, 149.2, 162.8, 172.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (319.38): C, 56.41 ; H, 5.37; N, 13.16. Found: C 56.29, H, 5.56, N, 12.96.

Application of these conditions to compound $\mathbf{1 1 b}$ also afforded pure 5 quantitatively.

4.8. Condensation between 8a and l-cysteine

Treatment of $\mathbf{8 a}(0.865 \mathrm{~g}, 3 \mathrm{mmol})$ under the conditions described above for the preparation of 9 gave a crude product containing 7% of the corresponding methyl ester. Pure compounds were obtained after radial chromatography (hexane/EtOAc, 90:10).
4.8.1. (3S,5S)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl]-5-[(4RS)-4-(ethoxycarbonyl)-2-thiazolin-2-yl]isoxazolidine 12a (mixture of epimers). $0.858 \mathrm{~g}(68 \%)$; oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{ddd}$, $1 \mathrm{H}, J=5.1,6.4,10.3 \mathrm{~Hz}), 3.40-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~d}$, $1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.90-3.96$ $(\mathrm{m}, 2 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.89(\mathrm{q}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 5.08(\mathrm{ddt}, 1 \mathrm{H}, J=1.26,7.3,9.6 \mathrm{~Hz}), 7.23-$ $7.31(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.2,25.2,26.7$, $35.0,35.1,35.4,61.8,61.9,66.8,66.9,67.7,78.1,109.4$, 127.7, 128.8 (2C), 129.3 (2C), 136.8, 170.5, 177.1.
4.8.2. (3S,5S)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxo-lan-4-yl]-5-[(4S)-4-(methoxycarbonyl)-2-thiazolin-2-yl]isoxazolidine 12b. $85 \mathrm{mg}(7 \%)$, oil; $[\alpha]_{\mathrm{D}}=-18(c 0.10$, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{dt}, 1 \mathrm{H}, J=7.6,12.9 \mathrm{~Hz}), 2.74(\mathrm{ddd}, 1 \mathrm{H}$, $J=3.0,8.0,12.9 \mathrm{~Hz}), 3.19(\mathrm{dt}, 1 \mathrm{H}, J=3.0,7.6 \mathrm{~Hz})$, $3.39-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=9.1,11.1 \mathrm{~Hz})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.90-3.97(\mathrm{~m}$, $2 \mathrm{H}), \quad 4.15(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=12.9 \mathrm{~Hz}), 4.90 \quad(\mathrm{q}, \quad 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}$), $5.08(\mathrm{ddt}, 1 \mathrm{H}, J=1.3,5.9,9.3 \mathrm{~Hz}), 7.28-$ $7.33(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.2,26.8,34.8$, 35.0 , $35.6,52.8,63.04,66.8,66.9,67.8,78.2,109.5$, 127.7, 128.5 (2C), 129.3 (2C), 136.7, 171.0, 177.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (406.50): C, $59.09 ; \mathrm{H}, 6.45$; N, 6.89. Found: C, 58.84; H, 6.51; N, 7.11.

4.9. (3S,5S)-2-Benzyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-[4-(ethoxycarbonyl)-2-thiazolyl]isoxazolidine 13

Treatment of $\mathbf{1 2 a}(0.841 \mathrm{~g}, 2 \mathrm{mmol})$ under the conditions described above for the preparation of 10a gave after radial chromatography (hexane/EtOAc, $85: 15$) 0.77 g (92%) of pure 13 as an oil. $[\alpha]_{\mathrm{D}}=-3\left(c 0.68, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.34$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.72(\mathrm{dt}, 1 \mathrm{H}, J=7.6,12.9 \mathrm{~Hz}), 2.94$ (ddd, $1 \mathrm{H}, J=3.3,8.1,12.9 \mathrm{~Hz}), 3.29(\mathrm{dt}, 1 \mathrm{H}, J=3.3$, $7.3 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=5.8,8.3 \mathrm{~Hz}), 3.87(\mathrm{~d}, 1 \mathrm{H}$, $J=12.9 \mathrm{~Hz}), 3.98(\mathrm{dd}, 1 \mathrm{H}, J=6.1,8.1 \mathrm{~Hz}), 4.06(\mathrm{q}$, $1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 4.39(\mathrm{q}, 2 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 5.39(\mathrm{t}, 1 \mathrm{H}, \quad J=7.8 \mathrm{~Hz}), 7.28-7.33(\mathrm{~m}$, $5 \mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.4,25.1$, 26.8, 37.1, 60.4, 61.5, 67.0, 67.7, 75.4, 78.1, 109.5, 127.7, 127.8, 128.5 (2C), 129.2 (2C), 136.6, 147.8, 161.3, 173.3. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (418.51): C, 60.27 ; H, 6.26; N, 6.69. Found: C, 60.09; H, 6.17; N, 6.81.

4.10. (3S,5S)-2-Benzyl-3-(hydroxymethyl)-5-[4-(ethoxy-carbonyl)-2-thiazolyljisoxazolidine 14

Treatment of $\mathbf{1 3}(0.7 \mathrm{~g}, 1.67 \mathrm{mmol})$ under the conditions described above for the preparation of 11a gave after radial chromatography (hexane/EtOAc, 75:25) 0.361 g (62%) of pure 14 as an oil. $[\alpha]_{\mathrm{D}}=-29\left(c 0.65, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.38(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.01$ (br d, 1H, $J=6.0 \mathrm{~Hz}$, ex. $\mathrm{D}_{2} \mathrm{O}$), $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.75$ (m, 1 H), 3.37 (quintuplet, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}$), $3.54-3.60(\mathrm{~m}$, $2 \mathrm{H}), \quad 4.01(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=13.2 \mathrm{~Hz}), \quad 4.17(\mathrm{~d}, \quad 1 \mathrm{H}$, $J=13.2 \mathrm{~Hz}), 4.39(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.38(\mathrm{t}, 1 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), \quad 7.24-7.36(\mathrm{~m}, 5 \mathrm{H}), \quad 8.13(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.4, 38.0, 61.5, 62.2, 62.6, 66.0, $77.5,127.7,127.8,128.5$ (2C), 129.1 (2C), 136.5, 147.2, 161.3, 173.3. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (348.42): C, 58.60; H, 5.79; N, 8.04. Found: C, 58.55; H, 5.69; N, 7.98.

4.11. (3S,5S)-2-Benzyl-3-(hydroxymethyl)-5-[4-(amino-carbonyl)-2-thiazolyl]isoxazolidine 15

Treatment of $14(0.3 \mathrm{~g}, 0.86 \mathrm{mmol})$ under the conditions described above for the preparation of 5a gave after radial chromatography (hexane/EtOAc, 65:35) 0.275 g (100%) of pure 15 as an oil. $[\alpha]_{\mathrm{D}}=-44\left(c 0.40, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.41$ (br t, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}$, ex. $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.74(\mathrm{dt}, 1 \mathrm{H}, J=5.6,12.9 \mathrm{~Hz}), 2.80(\mathrm{dt}, 1 \mathrm{H}$, $J=7.0,12.9 \mathrm{~Hz}), 3.45(\mathrm{dt}, 1 \mathrm{H}, J=5.5,11 \mathrm{~Hz}), 3.61-$ $3.66(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}$, $J=13.3 \mathrm{~Hz}), 5.34(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, ex. $\mathrm{D}_{2} \mathrm{O}$), 7.10 (br s, 1H, ex. $\mathrm{D}_{2} \mathrm{O}$), 7.30-7.39 (m, 5H), $8.16(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 37.8,62.4,62.8$, 66.2, 77.2, 124.8, 127.7, 128.5 (2C), 129.1 (2C), 136.6, 149.4, 162.8, 172.1. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (319.38): C, 56.41 ; H, 5.37; N, 13.16. Found: C, 56.60; H, 5.49; N, 13.30.

4.12. 1,3-Dipolar cycloaddition of nitrone 7 with acrylonitrile

A solution of aldehyde $\mathbf{1 6}^{25}(1.48 \mathrm{~g}, 4.94 \mathrm{mmol})$, hydroxylamine $17^{26}(2.12 \mathrm{~g}, 4.94 \mathrm{mmol})$, and acrylonitrile $(15 \mathrm{~mL}, 234.5 \mathrm{mmol})$ was heated at $70^{\circ} \mathrm{C}$, in a sealed
tube, for 12 h . The reaction mixture was evaporated and the residue purified by MPLC chromatography (hexane/EtOAc, 95:5) and then by semi-preparative HPLC (hexane $/{ }^{i} \mathrm{PrOH}, 99: 1$). Only major compound 18d was completely separated and fully characterized, the minor adducts $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ containing minor amounts $(<5 \%)$ of other isomers.
4.12.1. (3S,5S)-2-(5-O-tert-Butyldiphenylsilyl-2,3-O-iso-propylidene- β-d-ribofuranosyl)-3-(tert-butyldiphenylsil-oxymethyl)-5-cyanoisoxazolidine $\mathbf{1 8 a}$. $\delta_{\mathrm{H}} \quad(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.01(\mathrm{~s}, 18 \mathrm{H}), 1.3(\mathrm{~s}, 3 \mathrm{H}), 1.5(\mathrm{~s}, 3 \mathrm{H}), 2.61$ (ddd, $1 \mathrm{H}, J=3.4,4.9,9.5 \mathrm{~Hz}$), 3.35 (ddd, $1 \mathrm{H}, J=3.2$, $4.9,9.5 \mathrm{~Hz}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 3 \mathrm{H})$, $4.45(\mathrm{t}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 4.62(\mathrm{~m}, 2 \mathrm{H}), 4.8(\mathrm{~d}, 1 \mathrm{H}$, $J=0.7 \mathrm{~Hz}), 7.20-7.34(\mathrm{~m}, 12 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 8 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.2, 25.3, 26.6, 36.7, 61.5, 63.1, 64.7, 64.8, 80.4, 82.6, 83.4, 86.0, 112.6, 118.3, 127.4, 129.8, 129.6, 133.2, 134.7, 135.3, 135.5. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$ (777.11): C, 69.55; H, 7.26; N , 3.60. Found: C, 69.60; H, 7.30; N, 3.75.
4.12.2. (3S,5R)-2-(5-O-tert-Butyldiphenylsilyl-2,3-O-iso-propylidene- β-d-ribofuranosyl)-3-(tert-butyldiphenylsil-oxymethyl)-5-cyanoisoxazolidine $\mathbf{1 8 b}$. $\delta_{\mathrm{H}} \quad(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.03(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (dt, $1 \mathrm{H}, J=4.5,9.5 \mathrm{~Hz}$), 2.53 (ddd, $1 \mathrm{H}, J=3.0,4.0$, $9.5 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=10.5,4.9 \mathrm{~Hz}), 3.65(\mathrm{dd}, 1 \mathrm{H}$, $J=6.5,10.5 \mathrm{~Hz}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=5.5$, $8.0 \mathrm{~Hz}), 4.47(\mathrm{dd}, 1 \mathrm{H}, J=4.5,9.0 \mathrm{~Hz}), 4.51(\mathrm{dd}, 1 \mathrm{H}$, $J=4.0 .9 .0 \mathrm{~Hz}$), 4.71 (dddd, $1 \mathrm{H}, \quad J=4.0,4.5,4.9$, $6.5 \mathrm{~Hz}), 4.79(\mathrm{dd}, 1 \mathrm{H}, J=3.0 .4 .5 \mathrm{~Hz}), 4.82(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 7.24-7.34(\mathrm{~m}, 12 \mathrm{H}), 7.50-7.65(\mathrm{~m}, 8 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.2, 25.2, 26.5, $36.8,61.5,63.2$, 64.6, 64.9, 80.4, 82.6, 83.4, 85.9, 112.6, 118.4, 127.4, 129.8, 129.9, 133.1, 134.7, 135.4, 135.5. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$ (777.11): C, $69.55 ; \mathrm{H}, 7.26 ; \mathrm{N}$, 3.60. Found: C, 69.68; H, 7.34; N, 3.80.
4.12.3. (3R,5S)-2-(5-O-tert-Butyldiphenylsilyl-2,3-O-iso-propylidene- β-d-ribofuranosyl)-3-(tert-butyldiphenylsil-oxymethyl)-5-cyanoisoxazolidine 18d. $[\alpha]_{\mathrm{D}}=-7 \quad(c$ $\left.0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.02(\mathrm{~s}, 18 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{ddd}, 1 \mathrm{H}, J=3.0,5.9$, $12.7 \mathrm{~Hz}), 2.64$ (ddd, $1 \mathrm{H}, J=7.8,8.9,12.7 \mathrm{~Hz}$), 3.56 $(\mathrm{dd}, 1 \mathrm{H}, J=4.6,10.8 \mathrm{~Hz}), 3.65(\mathrm{dd}, 1 \mathrm{H}, J=10.8$, 6.2 Hz), 4.49 (dddd, $1 \mathrm{H}, J=3.0,4.6,6.2,7.8 \mathrm{~Hz}$), 4.51 (dd, $1 \mathrm{H}, \quad J=3.1, \quad 6.8 \mathrm{~Hz}), 4.58(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=3.1$, $6.8 \mathrm{~Hz}), 4.65(\mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, \quad J=$ $1.7 \mathrm{~Hz}), \quad 4.71(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=3.1 \mathrm{~Hz}), 4.80(\mathrm{dd}, \quad 1 \mathrm{H}$, $J=5.9,8.9 \mathrm{~Hz}), 4.82(\mathrm{~d}, 1 \mathrm{H}, \quad J=1.7 \mathrm{~Hz}), 7.22-7.36$ $(\mathrm{m}, 12 \mathrm{H}), 7.53-7.62(\mathrm{~m}, 8 \mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $19.15,25.11,26.52,36.84,61.59,63.58,64.65,65.66$, $80.22,82.70,83.42,85.09,113.69,118.40,127.69$, 129.80, 129.89, 132.95, 134.77, 135.42, 135.51. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$ (777.11): C, 69.55; H, 7.26; N, 3.60. Found: C, 69.71; H, 7.39; N, 3.83.

4.13. (3R,5S)-2-Benzyl-3-(hydroxymethyl)-5-cyanoisoxazolidine 19

Treatment of $\mathbf{8 d}(0.1 \mathrm{~g}, 0.35 \mathrm{mmol})$ under the conditions described above for the preparation of 11a afforded after
radial chromatography (hexane/EtOAc, $80: 20) 57 \mathrm{mg}$ (75%) of pure 19 as a foam. $[\alpha]_{\mathrm{D}}=+76\left(c 0.23, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47$ (ddd, 1 H , $J=3.5,5.3,13.2 \mathrm{~Hz}), 2.70(\mathrm{dt}, 1 \mathrm{H}, J=9.1,13.2 \mathrm{~Hz})$, 3.12 (ddt, $1 \mathrm{H}, J=4.1,5.3,8.8 \mathrm{~Hz}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.95$ (d, $1 \mathrm{H}, J=14.1 \mathrm{~Hz}$), $4.05(\mathrm{~d}, 1 \mathrm{H}, J=14.1 \mathrm{~Hz}), 4.73$ (dd, $1 \mathrm{H}, \quad J=3.5,9.1 \mathrm{~Hz}$), $7.29-7.32(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 36.8,60.6,61.6,64.2,65.5,118.6$, 128.6, 128.7, 127.6, 135.8. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (218.25): C, 66.04; H, 6.47; N, 12.84. Found: C, 66.19; H, 6.33; N, 12.61.

4.14. (3R,5S)-2-Benzyl-3-(tert-butoxydiphenylsiloxy-methyl)-5-cyanoisoxazolidine 20

To a solution of $\mathbf{1 9}$ ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ were added tert-butyldiphenylsilyl chloride ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{mg}, 0.3 \mathrm{mmol})$, and DMAP ($8 \mathrm{mg}, 0.07 \mathrm{mmol}$). The resulting solution was stirred at ambient temperature for 12 h at which time $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The organic layer was separated and washed with brine (10 mL), dried over MgSO_{4}, and evaporated to afford the crude product. Purification by radial chromatography (hexane/EtOAc, $90: 10)$ furnished pure $20(84 \mathrm{mg}, 80 \%)$ as an oil. $[\alpha]_{\mathrm{D}}=+60\left(c \quad 0.19, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $1.06(\mathrm{~s}, 9 \mathrm{H}), 2.38$ (ddd, $1 \mathrm{H}, J=3.5,6.5,13.0 \mathrm{~Hz}$), 2.70 (dd, $1 \mathrm{H}, J=9.4,13.0 \mathrm{~Hz}$), 3.13 (dddd, $1 \mathrm{H}, 4.9,5.6$, $6.5,6.6 \mathrm{~Hz}, \mathrm{H}_{3}$), $3.75(\mathrm{dd}, 1 \mathrm{H}, J=4.9,10.7 \mathrm{~Hz}), 3.83$ (dd, $1 \mathrm{H}, J=6.6,10.7 \mathrm{~Hz}$), $3.90(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}$), $4.35(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=14.6 \mathrm{~Hz}), 4.73(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=3.5$, $8.8 \mathrm{~Hz}), 7.29-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.60-7.66(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.2, $26.9,37.8,61.0,63.6,64.6$, $65.4,118.9,127.3,127.8,127.9,128.3,128.4,129.9$ (2C), 132.8 (2C), 135.5, 135.6, 136.7. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ (456.65): C, 73.64; H, 7.06; N, 6.13. Found: C, 73.55; H, 7.21; N, 6.02.

4.15. (3R,5S)-3-(tert-Butoxydiphenylsiloxymethyl)-5cyanoisoxazolidine 21

To a solution of $\mathbf{1 8 d}(0.45 \mathrm{~g}, 0.6 \mathrm{mmol})$ in MeOH $(15 \mathrm{~mL}), p$-toluenesulfonic acid $(0.17 \mathrm{~g}, 0.9 \mathrm{mmol})$ was added and the solution refluxed for 2 h . Then, after cooling, the solution was evaporated to dryness. The obtained crude product was pure enough to be used in the next step without further purification. δ_{H} $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.02(\mathrm{~s}, 9 \mathrm{H}), 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right)$, $3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.82(\mathrm{dd}, 1 \mathrm{H}, J=3.5,11.3 \mathrm{~Hz}), 3.96$ (dd, $1 \mathrm{H}, J=3.1,11.3 \mathrm{~Hz}$), $4.90(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}$, H_{5}), 6.01 (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.20-7.60(\mathrm{~m}, 10 \mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.3,25.6,37.9,62.3,65.4,75.0$, 119.2, 128.4, 130.3, 134.8.

4.16. N-Benzylation of 21

To a solution of 21, obtained from $\mathbf{1 8 d}(0.45 \mathrm{~g}$, $0.6 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(20 \mathrm{~mL})$, triethylamine $(0.082 \mathrm{~mL}, 0.6 \mathrm{mmol})$, and benzyl bromide $(0.071 \mathrm{~mL}$, 0.6 mmol) were added and the solution stirred for 2 h at room temperature. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phase was separated, washed with brine and dried over MgSO_{4}. Evaporation
of the solvent gave a residue which was purified by column chromatography (hexane/EtOAc, 9:1) to afford 260 mg (96%, two steps) of pure $\mathbf{2 0}$ as an oil. The physical and spectroscopic properties were identical to those observed for the same compound prepared from 19 as described above.
4.17. (3R,5S)-2-(5-O-tert-Butyldiphenylsilyl-2,3-O-iso-propylidene- β-d-ribofuranosyl)-3-(tert-butyldiphenylsil-oxymethyl)-5-[(4RS)-4-(ethoxycarbonyl)-2-thiazolin-2yljisoxazolidine 22 (mixture of epimers)

Treatment of $18 \mathbf{d}(0.5 \mathrm{~g}, 0.64 \mathrm{mmol})$ under the conditions described above for the preparation of 9a gave after chromatography (hexane/EtOAc, $80: 20$) 0.407 g (70%) of 22 as an oil which was, after ${ }^{1} \mathrm{H}$ NMR identification, promptly used for the further step. δ_{H} ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.02(\mathrm{~s}, 18 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}$, $3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dd}$, $1 \mathrm{H}, J=7.4,13.4 \mathrm{~Hz}$), 3.11 (dd, $1 \mathrm{H}, J=4.5,13.4 \mathrm{~Hz}$), $3.20-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=4.5,7.4 \mathrm{~Hz}), 4.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.80-4.90(\mathrm{~m}, 3 \mathrm{H})$, $4.92(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 12 \mathrm{H}), 7.53-$ $7.60(\mathrm{~m}, 8 \mathrm{H})$.
4.18. (3R,5S)-2-(5-O-tert-Butyldiphenylsilyl-2,3-O-iso-propylidene- β-D-ribofuranosyl)-3-(tert-butyldiphenylsil-oxymethyl)-5-[(4S)-4-(ethoxycarbonyl)-2-thiazolyl]isoxazolidine 23

Treatment of $22(0.4 \mathrm{~g}, 0.44 \mathrm{mmol})$ under the conditions described above for the preparation of 10a gave after chromatography (hexane/EtOAc, 80:20) 0.36 g (90%) of pure 23 as an oil. $[\alpha]_{\mathrm{D}}=-19\left(c 0.24, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.02(\mathrm{~s}, 18 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.41(\mathrm{~s}, 3 \mathrm{H}), 2.22$ (ddd, $1 \mathrm{H}, J=4.1$, $6.0,12.9 \mathrm{~Hz}$), 2.85 (ddd, $1 \mathrm{H}, J=4.5,6.0,12.9 \mathrm{~Hz}$), $3.30-3.40(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 4.60(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=0.6 \mathrm{~Hz}), 5.5$ (dd, $1 \mathrm{H}, J=4.5,6.02 \mathrm{~Hz}), 7.20-7.35(\mathrm{~m}, 12 \mathrm{H}), 7.43-$ $7.62(\mathrm{~m}, 8 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.1$, 19.2, 25.6, 26.5, 39.3, 60.2, 62.7, 62.9, 63.00, 81.2, 83.3, $83.4,86.2,111.2,124.2,127.7,129.8,129.9,133.0$, 134.8, 135.4, 135.5, 168.0, 170.2. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SSi}_{2}$ (907.27): C, 66.19; H, 6.89; N, 3.09. Found: C, 65.96; H, 6.91; N, 3.23.

4.19. (3R,5S)-3-(Hydroxymethyl)-5-[4-(aminocarbonyl)-2-thiazolylisoxazolidine ent-5

Ammonia gas was bubbled through a well stirred solution of $23(0.3 \mathrm{~g}, 0.33 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ at room temperature. After 1 h , the reaction mixture was evaporated under reduced pressure to dryness. The residue was dissolved in a $1.5 \% \mathrm{HCl}$ solution in EtOH $(10 \mathrm{~mL})$, and the reaction mixture stirred at room temperature for 3 h . The solution was brought to pH 10 by adding aq 10% sodium carbonate and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic phase was separated, washed with brine, and dried over MgSO_{4}. Evaporation of the solvent gave a residue which was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 10: 1\right)$ to afford $50 \mathrm{mg}(95 \%)$ of pure ent-5 as an oil. $[\alpha]_{\mathrm{D}}=+20$
(c $0.17, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right)$ 1.98 (ddd, $1 \mathrm{H}, ~ J=5.0,5.4,11.9 \mathrm{~Hz}$), 2.05 (ddd, 1 H , $J=5.9,6.0,11.9 \mathrm{~Hz}$), 2.72 (dddd, $1 \mathrm{H}, J=4.5,4.9$, $5.4,5.9 \mathrm{~Hz}$), $3.60(\mathrm{dd}, 1 \mathrm{H}, J=4.5,9.8 \mathrm{~Hz}$), 3.82 (dd, $1 \mathrm{H}, J=4.9,9.8 \mathrm{~Hz}), 4.5(\mathrm{dd}, 1 \mathrm{H}, \quad J=5.0,6.0 \mathrm{~Hz})$, $7.89(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) 41.2$, 62.1, 64.4, 87.9, 124.0, 149.4, 160.2 170.2. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (229.26): C, 41.91; H, 4.84; $\mathrm{N}, 18.33$. Found: C, 41.78; H, 5.01; N, 18.56.

Acknowledgements

We thank for their support of our programs: the Spanish Ministry of Science and Education (MEC, Madrid, Spain) and FEDER Program (Project BQU2004-0421) and the Government of Aragon (Zaragoza, Spain). Postgraduate students B. Meroufel and E. M. del Alamo are gratefully acknowledged, for exploratory work and Dr. S. Uriel (University of Zaragoza), for collecting Xray data. We also thank MIUR (Italy) and CNR (Italy), for their financial support.

References

1. (a) Goldstein, B. M.; Takusagawa, F.; Bermani, H. M.; Srivastava, P. C.; Robins, R. K. J. Am. Chem. Soc. 1983, 105, 7416-7422; (b) Colovic, M.; Sefer, D.; Bogdanovic, A.; Suvajdzic, N.; Jankovic, G.; Atkinson, H. D. E.; Milenkovic, P. Cancer Lett. 2003, 195, 153-159; (c) Earle, M. F.; Glazer, R. I. Cancer Res. 1983, 43, 133-137; (d) Robins, R. K.; Srivastava, P. C.; Narayanan, V. I.; Plowman, J.; Paull, K. D. J. Med. Chem. 1982, 25, 107108; (e) Tricot, G. J.; Jayaram, H. N.; Weber, G.; Hoffman, R. I. Int. J. Cell. Cloning 1990, 8, 161-170; (f) Yalowitz, J. A.; Pankiewicz, K.; Patterson, S. E.; Jayaram, H. N. Cancer Lett. 2002, 181, 31-38.
2. For recent review and treatises, see: (a) Perspectives in Nucleoside and Nucleic Acid Chemistry; Kisakurek, M. V., Rosemeyer, H., Eds.; Wiley-VCH: Weinheim, 2000; (b) Chu, C. K. Recent Advances in Nucleosides: Chemistry and Chemotherapy; Elsevier: Amsterdam, 2002; (c) Ferrero, M.; Gotor, V. Chem. Rev. 2000, 100, 4319-4348; (d) Pathak, T. Chem. Rev. 2002, 102, 1623-1667; (e) Ichikawa, E.; Kato, K. Curr. Med. Chem. 2001, 8, 385-423.
3. (a) Merino, P. Curr. Med. Chem. AIA 2002, 1, 389-411; (b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. In Recent Research Developments in Organic Chemistry; Pandalai, S. G., Ed.; Transworld Research Network: Trivandrum, India, 2000; Vol. 4, pp 227-237; (c) Mansour, T. S.; Storer, R. Curr. Pharm. Design 1997, 3, 227249.
4. Kini, G. D.; Hennen, W. J.; Robins, R. K. J. Org. Chem. 1986, 51, 4436-4439.
5. Franchetti, P. S.; Marchetti, S.; Cappellacci, L.; Jayaram, H. M.; Yalowitz, J. A.; Goldstein, B. M.; Barascut, J.-L.; Dukhan, D.; Imbach, J.-L.; Grifantini, M. J. Med. Chem. 2000, 43, 1264-1270.
6. Nucleoside analogues with an extra heteroatom in the sugar ring (e.g., lamivudine or dioxolane-T) exhibited remarkable antiviral and anticancer activity. See Ref. 3.
7. Xiang, Y.; Teng, Q.; Chu, C. K. Tetrahedron Lett. 1995, 36, 3781-3784.
8. (a) Chiacchio, U.; Genovese, F.; Iannazzo, D.; Librando, V.; Merino, P.; Rescifina, A.; Romeo, R.; Procopio, A.;

Romeo, G. Tetrahedron 2004, 60, 441-448; (b) Chiacchio, U.; Borrello, L.; Iannazzo, D.; Merino, P.; Piperno, A.; Rescifina, A.; Richichi, B.; Romeo, G. Tetrahedron: Asymmetry 2003, 14, 2419-2425; (c) Chiacchio, U.; Corsaro, A.; Mates, J. A.; Merino, P.; Piperno, A.; Rescifina, A.; Romeo, G.; Romeo, R.; Tejero, T. Tetrahedron 2003, 59, 4733-4738; (d) Merino, P.; Alamo, E. M.; Bona, M.; Franco, S.; Merchan, F. L.; Tejero, T.; Vieceli, O. Tetrahedron Lett. 2000, 41, 9239-9243; (e) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem. 2000, 65, 5575-5589.
9. Chiacchio, U.; Rescifina, A.; Saita, M. G.; Iannazzo, D.; Romeo, G.; Mates, J. A.; Tejero, T.; Merino, P. J. Org. Chem. 2005, 70, 8991-9001.
10. (a) Makara, G. M.; Keseru, G. M. J. Med. Chem. 1997, 40, 4154-4159; (b) Goldstein, B. M.; Takusagawa, F.; Berman, H. M.; Srivastava, P. C.; Robins, R. K. J. Am. Chem. Soc. 1983, 105, 7416-7422; (c) Goldstein, B. M.; Li, H.; Hallows, W. H.; Langs, D. A.; Franchetti, P.; Cappellacci, L.; Grifantini, M. J. Med. Chem. 1994, 37, 1684-1688; (d) Goldstein, B. M.; Mau, D. T.; Marquez, V. E. J. Med. Chem. 1988, 31, 1026-1031; (e) Franchetti, P.; Cappellacci, L.; Grifantini, M.; Barzi, A.; Nocentini, G.; Yang, H.; O’Connor, A.; Jayaram, H. N.; Carrell, C.; Goldstein, B. M. J. Med. Chem. 1995, 38, 3829-3837.
11. Dondoni, A.; Merino, P. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 3, pp 373-474.
12. For a review on 1,3-DC of N-glycosyl nitrones, see: Fisera, L.; Altimari, U. A. R.; Ertl, P. In Cycloaddition Reactions in Carbohydrate Chemistry; Giuliano, R. M., Ed.; American Chemical Society: Washington, 1992; pp 158-171.
13. Merino, P. In Science of Synthesis; Padwa, A., Ed.; Thieme, 2004; Vol. 27, pp 511-580.
14. For examples of the equivalence between the dioxolane ring and the hydroxymethyl group applied to isoxazolidinyl nucleosides, see: (a) Merino, P.; Franco, S.; Garces, N.; Merchan, F. L.; Tejero, T. Chem. Commun. 1998, 493494; (b) Merino, P.; Alamo, E. M.; Franco, S.; Merchan, F. L.; Simon, S.; Tejero, T. Tetrahedron: Asymmetry 2000, 11, 1543-1554, see also Ref. 8b.
15. Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Pistará, V.; Rescifina, A.; Romeo, R.; Sindona, G.; Romeo, G. Tetrahedron: Asymmetry 2003, 14, 2717-2723.
16. Vasella, A. Helv. Chim. Acta 1977, 60, 1273-1295.
17. The authors have deposited the atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained on request from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. The graphic view showed in Figure 2 was made with ortep3 software. Copyright by Farrugia, L. J., University of Glasgow. 1997-2000.
18. Change of the solvent of the reaction did not change substantially the observed ratios.
19. See Ref. 8b and references cited therein.
20. Rastelli, A.; Gandolfi, R.; Sarzi-Amadè, M. S. Adv. Quantum Chem. 2000, 36, 151-167.
21. Geometry optimizations were carried out by using the B3LYP (Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.) functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. Structures were fully optimized through step by step calculations at the B3LYP/6-31G(d) level of theory and then single point calculations were performed at MP2/6-31G(d) level. All transition structures were found to have only one negative eigenvalue with the corresponding eigenvector involving the formation of the newly created $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds.

Vibrational frequencies were calculated ($1 \mathrm{~atm}, 298.15 \mathrm{~K}$) for all B3LYP/6-31G(d) optimized structures and used unscaled, to compute ZPVE and activation energies. All calculations were performed using the Gaussian 03 revision B. 01 suite of programs. (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Pittsburgh PA, 2003).
22. Ramasamy, K. S.; Bandaru, R.; Averett, D. J. Org. Chem. 2000, 65, 5849-5851.
23. Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem. 1998, 63, 2371-2374.
24. Daumas, M.; Vo-Quang, Y.; Vo-Quang, L.; LeGoffic, F. Synthesis 1989, 64-65.
25. Shiao, M. J.; Yang, C. Y.; Lee, S. H.; Wu, T. C. Synth. Соттии. 1988, 18, 359-366.
26. Chiacchio, U.; Corsaro, A.; Gumina, G.; Rescifina, A.; Iannazzo, D.; Piperno, A.; Romeo, G.; Romeo, R. J. Org. Chem. 1999, 64, 9321-9327.
27. Interestingly, the ($5 S$)-configuration of the major adducts is opposite to that found by Vasella (see Ref. 16) for the cycloaddition between N-ribosyl- C-(alkoxymethyl) nitrones and methyl methacrylate, thus pointing out the influence in the diastereofacial selectivity of the reaction not only of the chiral auxiliary but also of the dipolarophile's nature.
28. Attempts of deprotecting the N-benzyl group included hydrogenation under mild conditions and reduction with Na and Li in liquid ammonia. A less common method, such as Montmorillonite K-10, which had successfully been used by us with other N-benzyl isoxazolidinyl nucleosides (see Ref. 8c) was also tested. In all cases complex reaction mixtures were obtained.
29. Furthermore, the use of different N-glycosyl units, such as mannosyl, gulosyl, or erythrosyl derivatives, which are available in both enantiomeric forms, could provide access to both enantiomeric series. For representative examples of the use of those nitrones, see: (a) Kasahara, K.; Iida, H.; Kibayashi, C. J. Org. Chem. 1989, 54, 2225-2233; (b) Cicchi, S.; Marradi, M.; Corsi, M.; Faggi, C.; Goti, A. Eur. J. Chem. 2003, 4152-4160, see also Ref. 16.
30. Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Tetrahedron: Asymmetry 1997, 8, 3489-3496.

[^0]: *Corresponding authors. Tel./fax: +34 976762075 (P.M.); e-mail: pmerino@unizar.es

